Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Front Immunol ; 13: 889813, 2022.
Article in English | MEDLINE | ID: covidwho-1974656

ABSTRACT

COVID-19 is caused by the human pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in widespread morbidity and mortality. CD4+ T cells, CD8+ T cells and neutralizing antibodies all contribute to control SARS-CoV-2 infection. However, heterogeneity is a major factor in disease severity and in immune innate and adaptive responses to SARS-CoV-2. We performed a deep analysis by flow cytometry of lymphocyte populations of 125 hospitalized SARS-CoV-2 infected patients on the day of hospital admission. Five clusters of patients were identified using hierarchical classification on the basis of their immunophenotypic profile, with different mortality outcomes. Some characteristics were observed in all the clusters of patients, such as lymphopenia and an elevated level of effector CD8+CCR7- T cells. However, low levels of T cell activation are associated to a better disease outcome; on the other hand, profound CD8+ T-cell lymphopenia, a high level of CD4+ and CD8+ T-cell activation and a high level of CD8+ T-cell senescence are associated with a higher mortality outcome. Furthermore, a cluster of patient was characterized by high B-cell responses with an extremely high level of plasmablasts. Our study points out the prognostic value of lymphocyte parameters such as T-cell activation and senescence and strengthen the interest in treating the patients early in course of the disease with targeted immunomodulatory therapies based on the type of adaptive response of each patient.


Subject(s)
COVID-19 , Lymphocyte Subsets , Lymphopenia , B-Lymphocytes , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/diagnosis , COVID-19/immunology , COVID-19/mortality , Humans , Lymphocyte Activation , Lymphopenia/virology , SARS-CoV-2
2.
J Virol ; 96(9): e0003822, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1788914

ABSTRACT

Due to the limitation of human studies with respect to individual difference or the accessibility of fresh tissue samples, how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in pathological complications in lung, the main site of infection, is still incompletely understood. Therefore, physiologically relevant animal models under realistic SARS-CoV-2 infection conditions would be helpful to our understanding of dysregulated inflammation response in lung in the context of targeted therapeutics. Here, we characterized the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicates human symptoms, including severe lung pathology and lymphopenia. We showed a reduction of lymphocyte populations and an increase of neutrophils in lung and then demonstrated the key role of neutrophil-mediated lung immunopathology in both mice and humans. Under severe conditions, neutrophils recruited by a chemokine-driven positive feedback produced elevated "fatal signature" proinflammatory genes and pathways related to neutrophil activation or releasing of granular content. In addition, we identified a new Cd177high cluster that is undergoing respiratory burst and Stfahigh cluster cells that may dampen antigen presentation upon infection. We also revealed the devastating effect of overactivated neutrophil by showing the highly enriched neutrophil extracellular traps in lung and a dampened B-cell function in either lung or spleen that may be attributed to arginine consumption by neutrophil. The current study helped our understanding of SARS-CoV-2-induced pneumonia and warranted the concept of neutrophil-targeting therapeutics in COVID-19 treatment. IMPORTANCE We demonstrated the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicated human symptoms, including severe lung pathology and lymphopenia. Our comprehensive study revealed the key role of neutrophil-mediated lung immunopathology in SARS-CoV-2-induced severe pneumonia, which not only helped our understanding of COVID-19 but also warranted the concept of neutrophil targeting therapeutics in COVID-19 treatment.


Subject(s)
COVID-19 , Lung , Neutrophils , Animals , COVID-19/immunology , Disease Models, Animal , Humans , Lung/pathology , Lung/virology , Lymphopenia/virology , Mice , Neutrophils/immunology , SARS-CoV-2 , Spleen/pathology , Spleen/virology
3.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1760640

ABSTRACT

Tuberculosis is still an important medical and social problem. In recent years, great strides have been made in the fight against M. tuberculosis, especially in the Russian Federation. However, the emergence of a new coronavirus infection (COVID-19) has led to the long-term isolation of the population on the one hand and to the relevance of using personal protective equipment on the other. Our knowledge regarding SARS-CoV-2-induced inflammation and tissue destruction is rapidly expanding, while our understanding of the pathology of human pulmonary tuberculosis gained through more the 100 years of research is still limited. This paper reviews the main molecular and cellular differences and similarities caused by M. tuberculosis and SARS-CoV-2 infections, as well as their critical immunological and pathomorphological features. Immune suppression caused by the SARS-CoV-2 virus may result in certain difficulties in the diagnosis and treatment of tuberculosis. Furthermore, long-term lymphopenia, hyperinflammation, lung tissue injury and imbalance in CD4+ T cell subsets associated with COVID-19 could propagate M. tuberculosis infection and disease progression.


Subject(s)
COVID-19/etiology , Tuberculosis/diagnosis , Tuberculosis/etiology , COVID-19/immunology , Coinfection , Host-Pathogen Interactions , Humans , Inflammation/microbiology , Inflammation/pathology , Inflammation/virology , Lymphopenia/microbiology , Lymphopenia/virology , Mycobacterium tuberculosis/pathogenicity , SARS-CoV-2/pathogenicity
4.
Signal Transduct Target Ther ; 7(1): 57, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702971

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a highly transmissible disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that poses a major threat to global public health. Although COVID-19 primarily affects the respiratory system, causing severe pneumonia and acute respiratory distress syndrome in severe cases, it can also result in multiple extrapulmonary complications. The pathogenesis of extrapulmonary damage in patients with COVID-19 is probably multifactorial, involving both the direct effects of SARS-CoV-2 and the indirect mechanisms associated with the host inflammatory response. Recognition of features and pathogenesis of extrapulmonary complications has clinical implications for identifying disease progression and designing therapeutic strategies. This review provides an overview of the extrapulmonary complications of COVID-19 from immunological and pathophysiologic perspectives and focuses on the pathogenesis and potential therapeutic targets for the management of COVID-19.


Subject(s)
Acute Kidney Injury/complications , COVID-19/complications , Cytokine Release Syndrome/complications , Disseminated Intravascular Coagulation/complications , Lymphopenia/complications , Myocarditis/complications , Pulmonary Embolism/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/immunology , Acute Kidney Injury/virology , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/virology , Clinical Trials as Topic , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/immunology , Disseminated Intravascular Coagulation/virology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/virology , Humans , Immunity, Innate/drug effects , Immunologic Factors/therapeutic use , Lymphopenia/drug therapy , Lymphopenia/immunology , Lymphopenia/virology , Myocarditis/drug therapy , Myocarditis/immunology , Myocarditis/virology , Pulmonary Embolism/drug therapy , Pulmonary Embolism/immunology , Pulmonary Embolism/virology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
5.
Front Endocrinol (Lausanne) ; 12: 774346, 2021.
Article in English | MEDLINE | ID: covidwho-1662575

ABSTRACT

Background: Both lymphopenia and thyroid dysfunction are commonly observed among COVID-19 patients. Whether thyroid function independently correlates with lymphocyte counts (LYM) remains to be elucidated. Methods: We included consecutive adults without known thyroid disorder admitted to Queen Mary Hospital for COVID-19 from July 2020 to April 2021 who had thyroid-stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3) and LYM measured on admission. Results: A total of 541 patients were included. Median LYM was 1.22 x 109/L, with 36.0% of the cohort lymphopenic. 83 patients (15.4%) had abnormal thyroid function tests (TFTs), mostly non-thyroidal illness syndrome (NTIS). Patients with lymphopenia had lower TSH, fT4 and fT3 levels than those without. Multivariable stepwise linear regression analysis revealed that both TSH (standardized beta 0.160, p<0.001) and fT3 (standardized beta 0.094, p=0.023), but not fT4, remained independently correlated with LYM, in addition to age, SARS-CoV-2 viral load, C-reactive protein levels, coagulation profile, sodium levels and more severe clinical presentations. Among the 40 patients who had reassessment of TFTs and LYM after discharge, at a median of 9 days from admission, there were significant increases in TSH (p=0.031), fT3 (p<0.001) and LYM (p<0.001). Furthermore, patients who had both lymphopenia and NTIS were more likely to deteriorate compared to those who only had either one alone, and those without lymphopenia or NTIS (p for trend <0.001). Conclusion: TSH and fT3 levels showed independent positive correlations with LYM among COVID-19 patients, supporting the interaction between the hypothalamic-pituitary-thyroid axis and immune system in COVID-19.


Subject(s)
COVID-19/complications , Lymphocytes/pathology , Lymphopenia/epidemiology , SARS-CoV-2/isolation & purification , Thyroid Diseases/epidemiology , Thyrotropin/blood , Triiodothyronine/blood , Adult , Aged , COVID-19/virology , China/epidemiology , Female , Hospitalization , Humans , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/immunology , Lymphopenia/virology , Male , Middle Aged , Thyroid Diseases/blood , Thyroid Diseases/immunology , Thyroid Diseases/virology , Thyroid Function Tests , Thyroid Hormones/blood
6.
Front Immunol ; 12: 707159, 2021.
Article in English | MEDLINE | ID: covidwho-1581347

ABSTRACT

Coronavirus disease-2019 (COVID-19) was declared as a pandemic by WHO in March 2020. SARS-CoV-2 causes a wide range of illness from asymptomatic to life-threatening. There is an essential need to identify biomarkers to predict disease severity and mortality during the earlier stages of the disease, aiding treatment and allocation of resources to improve survival. The aim of this study was to identify at the time of SARS-COV-2 infection patients at high risk of developing severe disease associated with low survival using blood parameters, including inflammation and coagulation mediators, vital signs, and pre-existing comorbidities. This cohort included 89 multi-ethnic COVID-19 patients recruited between July 14th and October 20th 2020 in Doha, Qatar. According to clinical severity, patients were grouped into severe (n=33), mild (n=33) and asymptomatic (n=23). Common routine tests such as complete blood count (CBC), glucose, electrolytes, liver and kidney function parameters and markers of inflammation, thrombosis and endothelial dysfunction including complement component split product C5a, Interleukin-6, ferritin and C-reactive protein were measured at the time COVID-19 infection was confirmed. Correlation tests suggest that C5a is a predictive marker of disease severity and mortality, in addition to 40 biological and physiological parameters that were found statistically significant between survivors and non-survivors. Survival analysis showed that high C5a levels, hypoalbuminemia, lymphopenia, elevated procalcitonin, neutrophilic leukocytosis, acute anemia along with increased acute kidney and hepatocellular injury markers were associated with a higher risk of death in COVID-19 patients. Altogether, we created a prognostic classification model, the CAL model (C5a, Albumin, and Lymphocyte count) to predict severity with significant accuracy. Stratification of patients using the CAL model could help in the identification of patients likely to develop severe symptoms in advance so that treatments can be targeted accordingly.


Subject(s)
Biomarkers/blood , COVID-19/blood , COVID-19/mortality , Complement C5a/analysis , Patient Acuity , Adult , Aged , COVID-19/complications , Cohort Studies , Female , Humans , Hypoalbuminemia/mortality , Hypoalbuminemia/virology , Lymphocyte Count , Lymphopenia/mortality , Lymphopenia/virology , Male , Middle Aged , Prognosis , Prospective Studies , Qatar , SARS-CoV-2
7.
Signal Transduct Target Ther ; 6(1): 418, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565706

ABSTRACT

The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 in acute disease (n = 58) and in disease recovery in convalescent patients (n = 28) from Hannover Medical School, we used flow cytometry and proteomics data with unsupervised clustering analyses. In our observational study, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but the expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. The core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.


Subject(s)
Antibodies, Viral/blood , Blood Proteins/metabolism , COVID-19/diagnosis , Cytokine Release Syndrome/diagnosis , Endothelium, Vascular/virology , Lymphopenia/diagnosis , SARS-CoV-2/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Cluster Analysis , Convalescence , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Disease Progression , Endothelium, Vascular/immunology , Granulocytes/immunology , Granulocytes/virology , Hematopoietic Cell Growth Factors/blood , Hepatocyte Growth Factor/blood , Humans , Intensive Care Units , Interleukin-12 Subunit p40/blood , Interleukin-6/blood , Interleukin-8/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Lectins, C-Type/blood , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/virology , Plasma Cells/immunology , Plasma Cells/virology , Survival Analysis , T-Lymphocytes/immunology , T-Lymphocytes/virology
8.
Am J Perinatol ; 38(12): 1236-1243, 2021 10.
Article in English | MEDLINE | ID: covidwho-1521902

ABSTRACT

OBJECTIVE: This study aimed to determine if laboratory inflammatory markers can predict critical disease in symptomatic COVID-19 pregnant women. STUDY DESIGN: Multicenter, retrospective cohort study of all pregnant women presenting to New York City Health + Hospitals emergency departments from March 1 to May 30, 2020. We assessed all symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive pregnant women with room air oxygen saturation <95% on presentation. Logistic regression modeled the relationship of inflammatory markers to outcomes. Area under receiver operating characteristic (ROC) curve and maximum Youden index determined prognostic ability and optimal predictive cut-off values. RESULTS: A total of 498 of 5,002 pregnant women were SARS-CoV-2 RT-PCR positive of which 77 presented with hypoxemia. The absolute lymphocyte count (ALC) and neutrophil to lymphocyte ratio (NLR) were highly sensitive for progression to severe illness. ROC curve analysis identified predictive cutoffs: ALC < 1.49 × 109/L (96% sensitivity, 52% specificity, area under the receiver operating characteristic curve [AUC] = 0.80 (95% confidence interval [CI]: 0.70-0.90) and NLR >8.1 (100% sensitivity, 70% specificity, AUC = 0.86 (95% CI: [0.76-0.96]). CONCLUSION: ALC and NLR on presentation are sensitive markers of progression to critical COVID-19 disease in symptomatic pregnant women. This finding provides a practical, rapid method for assessment and can assist clinicians with decision-making regarding triage, level of care, and patient management. KEY POINTS: · Few tools exist to gauge risk of severe COVID-19 disease in pregnancy.. · ALC and NLR are sensitive predictive markers of disease progression in symptomatic women.. · Cut-off values for ALC and NLR will help direct patient triage and management..


Subject(s)
COVID-19/complications , Lymphocyte Count , Lymphopenia/virology , Neutrophils/metabolism , Pregnancy Complications, Infectious/virology , Severity of Illness Index , Adult , Cohort Studies , Disease Progression , Female , Humans , Pregnancy , Retrospective Studies , Sensitivity and Specificity
9.
J Clin Lab Anal ; 36(1): e24064, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1525450

ABSTRACT

BACKGROUND: The unresolved COVID-19 pandemic considerably impacts the health services in Iraq and worldwide. Consecutive waves of mutated virus increased virus spread and further constrained health systems. Although molecular identification of the virus by polymerase chain reaction is the only recommended method in diagnosing COVID-19 infection, radiological, biochemical, and hematological studies are substantially important in risk stratification, patient follow-up, and outcome prediction. AIM: This narrative review summarized the hematological changes including the blood indices, coagulative indicators, and other associated biochemical laboratory markers in different stages of COVID-19 infection, highlighting the diagnostic and prognostic significance. METHODS: Literature search was conducted for multiple combinations of different hematological tests and manifestations with novel COVID-19 using the following key words: "hematological," "complete blood count," "lymphopenia," "blood indices," "markers" "platelet" OR "thrombocytopenia" AND "COVID-19," "coronavirus2019," "2019-nCoV," OR "SARS-CoV-2." Articles written in the English language and conducted on human samples between December 2019 and January 2021 were included. RESULTS: Hematological changes are not reported in asymptomatic or presymptomatic COVID-19 patients. In nonsevere cases, hematological changes are subtle, included mainly lymphocytopenia (80.4%). In severe, critically ill patients and those with cytokine storm, neutrophilia, lymphocytopenia, elevated D-dimer, prolonged PT, and reduced fibrinogen are predictors of disease progression and adverse outcome. CONCLUSION: Monitoring hematological changes in patients with COVID-19 can predict patients needing additional care and stratify the risk for severe course of the disease. More studies are required in Iraq to reflect the hematological changes in COVID-19 as compared to global data.


Subject(s)
COVID-19/blood , COVID-19/etiology , Cytokine Release Syndrome/blood , Pregnancy Complications, Infectious/blood , Biomarkers/blood , Blood Coagulation , Cytokine Release Syndrome/virology , Female , Hematologic Tests , Humans , Leukocyte Count , Lymphopenia/blood , Lymphopenia/virology , Pregnancy , Pregnancy Complications, Infectious/virology , Severity of Illness Index
10.
J Infect Dis ; 224(8): 1333-1344, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1493827

ABSTRACT

BACKGROUND: Lymphopenia is a key feature for adult patients with coronavirus disease 2019 (COVID-19), although it is rarely observed in children. The underlying mechanism remains unclear. METHODS: Immunohistochemical and flow cytometric analyses were used to compare the apoptotic rate of T cells from COVID-19 adults and children and apoptotic responses of adult and child T cells to COVID-19 pooled plasma. Biological properties of caspases and reactive oxygen species were assessed in T cells treated by COVID-19 pooled plasma. RESULTS: Mitochondria apoptosis of peripheral T cells were identified in COVID-19 adult patient samples but not in the children. Furthermore, increased tumor necrosis factor-α and interleukin-6 in COVID-19 plasma induced mitochondria apoptosis and caused deoxyribonucleic acid damage by elevating reactive oxygen species levels of the adult T cells. However, the child T cells showed tolerance to mitochondrial apoptosis due to mitochondria autophagy. Activation of autophagy could decrease apoptotic sensitivity of the adult T cells to plasma from COVID-19 patients. CONCLUSIONS: Our results indicated that the mitochondrial apoptosis pathway was activated in T cells of COVID-19 adult patients specifically, which may shed light on the pathophysiological difference between adults and children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 ).


Subject(s)
COVID-19/complications , Lymphopenia/blood , SARS-CoV-2/immunology , T-Lymphocytes/pathology , Adolescent , Adult , Age Factors , Aged , Apoptosis/immunology , Autophagy , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Child , Child, Preschool , Humans , Infant , Lymphopenia/immunology , Lymphopenia/pathology , Lymphopenia/virology , Male , Middle Aged , Mitochondria/immunology , Mitochondria/pathology , Reactive Oxygen Species/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology
12.
J Med Virol ; 93(9): 5425-5431, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363680

ABSTRACT

A rapid outbreak of novel coronavirus, coronavirus disease-2019 (COVID-19), has made it a global pandemic. This study focused on the possible association between lymphopenia and computed tomography (CT) scan features and COVID-19 patient mortality. The clinical data of 596 COVID-19 patients were collected from February 2020 to September 2020. The patients' serological survey and CT scan features were retrospectively explored. The median age of the patients was 56.7 ± 16.4 years old. Lung involvement was more than 50% in 214 COVID-19 patients (35.9%). The average blood lymphocyte percentage was 20.35 ± 10.16 (normal range, 20%-50%). Although the levels of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were high in more than 80% of COVID-19 patients; CRP, ESR, and platelet-to-lymphocyte ratio (PLR) may not indicate the in-hospital mortality of COVID-19. Patients with severe lung involvement and lymphopenia were found to be significantly associated with increased odds of death (odds ratio, 9.24; 95% confidence interval, 4.32-19.78). These results indicated that lymphopenia < 20% along with pulmonary involvement >50% impose a multiplicative effect on the risk of mortality. The in-hospital mortality rate of this group was significantly higher than other COVID-19 hospitalized cases. Furthermore, they meaningfully experienced a prolonged stay in the hospital (p = .00). Lymphocyte count less than 20% and chest CT scan findings with more than 50% involvement might be related to the patient's mortality. These could act as laboratory and clinical indicators of disease severity, mortality, and outcome.


Subject(s)
COVID-19/complications , Lung/pathology , Lymphopenia/complications , Pneumonia/complications , SARS-CoV-2/pathogenicity , Adult , Aged , Biomarkers/blood , Blood Platelets/pathology , Blood Platelets/virology , Blood Sedimentation , C-Reactive Protein , COVID-19/diagnostic imaging , COVID-19/mortality , COVID-19/virology , Female , Hospital Mortality , Humans , Iran , Lung/virology , Lymphocytes/pathology , Lymphocytes/virology , Lymphopenia/diagnostic imaging , Lymphopenia/mortality , Lymphopenia/virology , Male , Middle Aged , Pneumonia/diagnostic imaging , Pneumonia/mortality , Pneumonia/virology , Retrospective Studies , Severity of Illness Index , Survival Analysis , Tomography, X-Ray Computed
13.
Mol Immunol ; 138: 121-127, 2021 10.
Article in English | MEDLINE | ID: covidwho-1347762

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) is a novel viral infection threatening worldwide health as currently there exists no effective treatment strategy and vaccination programs are not publicly available yet. T lymphocytes play an important role in antiviral defenses. However, T cell frequency and functionality may be affected during the disease. MATERIAL AND METHODS: Total blood samples were collected from patients with mild and severe COVID-19, and the total lymphocyte number, as well as CD4+ and CD8 + T cells were assessed using flowcytometry. Besides, the expression of exhausted T cell markers was evaluated. The levels of proinflammatory cytokines were also investigated in the serum of all patients using enzyme-linked immunesorbent assay (ELISA). Finally, the obtained results were analyzed along with laboratory serological reports. RESULTS: COVID-19 patients showed lymphopenia and reduced CD4+ and CD8 + T cells, as well as high percentage of PD-1 expression by T cells, especially in severe cases. Serum secretion of TNF-α, IL-1ß, and IL-2 receptor (IL-2R) were remarkably increased in patients with severe symptoms, as compared with healthy controls. Moreover, high levels of triglyceride (TG) and low density lipoprotein cholesterol (LDL-C), were correlated with the severity of the disease. CONCLUSION: Reduced number and function of T cells were observed in COVID-19 patients, especially in severe patients. Meanwhile, the secretion of proinflammatory cytokines was increased as the disease developed. High level of serum IL-2R was also considered as a sign of lymphopenia. Additionally, hypercholesterolemia and hyperlipidemia could be important prognostic factors in determining the severity of the infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Lymphopenia/immunology , SARS-CoV-2/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/metabolism , COVID-19/virology , Cholesterol, LDL/blood , Cytokines/blood , Cytokines/immunology , Cytokines/metabolism , Disease Progression , Female , Humans , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/virology , Male , Middle Aged , Prognosis , SARS-CoV-2/physiology , Severity of Illness Index , Triglycerides/blood
14.
Viruses ; 13(7)2021 07 20.
Article in English | MEDLINE | ID: covidwho-1325785

ABSTRACT

Lymphopenia is a frequent hematological manifestation, associated with a severe course of COVID-19, with an insufficiently understood pathogenesis. We present molecular genetic immunohistochemical, and electron microscopic data on SARS-CoV-2 dissemination and viral load (VL) in lungs, mediastinum lymph nodes, and the spleen of 36 patients who died from COVID-19. Lymphopenia <1 × 109/L was observed in 23 of 36 (63.8%) patients. In 12 of 36 cases (33%) SARS-CoV-2 was found in lung tissues only with a median VL of 239 copies (range 18-1952) SARS-CoV-2 cDNA per 100 copies of ABL1. Histomorphological changes corresponding to bronchopneumonia and the proliferative phase of DAD were observed in these cases. SARS-CoV-2 dissemination into the lungs, lymph nodes, and spleen was detected in 23 of 36 patients (58.4%) and was associated with the exudative phase of DAD in most of these cases. The median VL in the lungs was 12,116 copies (range 810-250281), lymph nodes-832 copies (range 96-11586), and spleen-71.5 copies (range 0-2899). SARS-CoV-2 in all cases belonged to the 19A strain. A immunohistochemical study revealed SARS-CoV-2 proteins in pneumocytes, alveolar macrophages, and bronchiolar epithelial cells in lung tissue, sinus histiocytes of lymph nodes, as well as cells of the Billroth pulp cords and spleen capsule. SARS-CoV-2 particles were detected by transmission electron microscopy in the cytoplasm of the endothelial cell, macrophages, and lymphocytes. The infection of lymphocytes with SARS-CoV-2 that we discovered for the first time may indicate a possible link between lymphopenia and SARS-CoV-2-mediated cytotoxic effect.


Subject(s)
COVID-19/virology , Lung/virology , Lymph Nodes/virology , Lymphopenia/virology , Mediastinum/virology , SARS-CoV-2/isolation & purification , Spleen/virology , Aged , Aged, 80 and over , COVID-19 Testing , Female , Humans , Immunohistochemistry , Lung/pathology , Lymphopenia/immunology , Male , Middle Aged , Multiplex Polymerase Chain Reaction , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Load
15.
Cell Death Differ ; 28(12): 3297-3315, 2021 12.
Article in English | MEDLINE | ID: covidwho-1298835

ABSTRACT

Patients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus-host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and noncancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Cancer patients with a prolonged SARS-CoV-2 RNA detection exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of nonconventional monocytes, and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T-helper cells, and non-naive Granzyme B+FasL+, EomeshighTCF-1high, PD-1+CD8+ Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity, and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long-term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death.


Subject(s)
COVID-19/complications , COVID-19/virology , Lymphopenia/complications , Neoplasms/complications , RNA, Viral/analysis , SARS-CoV-2/genetics , Virus Shedding , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , DNA, Bacterial/blood , Enterobacteriaceae/genetics , Female , Humans , Interferon Type I/blood , Lymphopenia/virology , Male , Micrococcaceae/genetics , Middle Aged , Nasopharynx/virology , Neoplasms/diagnosis , Neoplasms/mortality , Pandemics , Prognosis , Time Factors , Young Adult
16.
J Microbiol Immunol Infect ; 54(1): 105-108, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1272568

ABSTRACT

Cases of co-infection and secondary infection emerging during the current Coronavirus Disease-19 (COVID-19) pandemic are a major public health concern. Such cases may result from immunodysregulation induced by the SARS-CoV-2 virus. Pandemic preparedness must include identification of disease natural history and common secondary infections to implement clinical solutions.


Subject(s)
COVID-19/immunology , COVID-19/microbiology , Coinfection/immunology , Coinfection/virology , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/virology , Coinfection/epidemiology , Humans , Immunosuppression Therapy , Lymphopenia/immunology , Lymphopenia/microbiology , Lymphopenia/virology , Pandemics , Prevalence , Public Health , Superinfection/immunology , Superinfection/microbiology , Superinfection/virology
17.
BMC Infect Dis ; 21(1): 412, 2021 May 04.
Article in English | MEDLINE | ID: covidwho-1216882

ABSTRACT

BACKGROUND: Since the outbreak of coronavirus disease 2019 in December 2019, more than 8 million cases have occurred worldwide as of June 16, 2020. However, it is important to distinguish COVID-19 from other respiratory infectious diseases, such as influenza. Here, we comparatively described the clinical characteristics of children with COVID-19 and paediatric patients with influenza. METHODS: In this retrospective, single-centre study, we reviewed the electronic medical records of 585 paediatric patients with COVID-19 or influenza in Wuhan Children's Hospital, China. Clinical and epidemiological characteristics, laboratory findings, and clinical outcomes were comparatively analysed. RESULTS: The median ages were 6.96 years (IQR, 2-10.81) for children with confirmed COVID-19, 2.67 years (IQR, 1.03-15.25) for those with influenza A and 3.67 years (IQR, 1.62-5.54) for those with influenza B. Fever was a symptom in 84 (34.7%) COVID-19 cases, 132 (70.21%) influenza A cases and 111 (74.50%) influenza B cases. The median length of stay (LOS) was 11 (8-15) days for paediatric COVID-19 patients, 4 (3-6) days for influenza A patients and 5 (3-6) days for influenza B patients. Twenty-six (13.98%) influenza A patients and 18 (12.59%) influenza B patients presented with decreased white blood cell counts, while 13 (5.33%) COVID-19 patients presented with decreased white blood cell counts. Eight (3.28%) COVID-19 patients, 23 (12.71%) influenza A patients and 21 (14.79%) influenza B patients experienced lymphocytopenia. Acute cardiac injury occurred in 18 (7.29%) COVID-19 patients, while 37 (19.68%) influenza A and 27 (18.12%) influenza B patients had acute cardiac injury. CONCLUSION: In this study, the illnesses of children with COVID-19 were demonstrated to be less severe than those of paediatric patients with influenza, and COVID-19 patients had milder illness and fewer complications.


Subject(s)
COVID-19 Drug Treatment , COVID-19/etiology , Influenza, Human/drug therapy , Influenza, Human/etiology , Adolescent , COVID-19/epidemiology , Child , Child, Hospitalized , Child, Preschool , China/epidemiology , Comorbidity , Female , Fever/epidemiology , Hospitals, Pediatric , Humans , Infant , Influenza, Human/epidemiology , Length of Stay , Lymphopenia/epidemiology , Lymphopenia/virology , Male , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/virology , Retrospective Studies
18.
J Med Virol ; 93(2): 794-802, 2021 02.
Article in English | MEDLINE | ID: covidwho-1196404

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in the intestines and feces, but its clinical significance is not completely clear. We aim to characterize the longitudinal test results of SARS-CoV-2 RNA in anal swabs and to explore the association with disease severity. METHODS: We included laboratory-confirmed coronavirus disease 2019 (COVID-19) patients, who were hospitalized in Guangzhou Eighth People's Hospital and excluded those who had not received anal swabs for SARS-COV-2 RNA testing. Epidemiological, clinical, and laboratory data were obtained. Throat swabs and anal swabs were collected periodically for SARS-COV-2 RNA detection. RESULTS: Two hundred and seventeen eligible patients (median aged 50 years, 50.2% were females) were analyzed. 21.2% (46/217) of the patients were detected with SARS-CoV-2 RNA in anal swabs. The duration of viral RNA was longer, but the viral load was lower in anal swabs than throat swabs in the early stage of the disease. During a median follow-up of 20 days, 30 (13.8%) patients were admitted to the intensive care unit (ICU) for high-flow nasal cannula or higher-level oxygen support measures to correct hypoxemia. Detectable viral RNA in anal swabs (adjusted hazard ratio [aHR], 2.50; 95% confidence interval [CI], 1.20-5.24), increased C-reactive protein (aHR, 3.14; 95% CI, 1.35-7.32) and lymphocytopenia (aHR, 3.12; 95% CI, 1.46-6.67) were independently associated with ICU admission. The cumulative incidence of ICU admission was higher among patients with detectable viral RNA in anal swabs (26.3% vs 10.7%, P = .006). CONCLUSION: Detectable SARS-CoV-2 RNA in the digestive tract was a potential warning indicator of severe disease.


Subject(s)
Anal Canal/virology , COVID-19/diagnosis , Lymphopenia/diagnosis , RNA, Viral/genetics , SARS-CoV-2/genetics , Adult , Antiviral Agents/therapeutic use , C-Reactive Protein/metabolism , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , COVID-19 Testing , Chloroquine/therapeutic use , Female , Hospitalization/statistics & numerical data , Humans , Indoles/therapeutic use , Intensive Care Units/statistics & numerical data , Lymphopenia/pathology , Lymphopenia/therapy , Lymphopenia/virology , Male , Middle Aged , Oseltamivir/therapeutic use , Pharynx/virology , Retrospective Studies , SARS-CoV-2/pathogenicity , Severity of Illness Index , Viral Load/drug effects
19.
Clin Infect Dis ; 71(16): 2167-2173, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153177

ABSTRACT

BACKGROUND: Washington State served as the initial epicenter of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in the United States. An understanding of the risk factors and clinical outcomes of hospitalized patients with coronavirus disease 2019 (COVID-19) may provide guidance for management. METHODS: All laboratory-confirmed COVID-19 cases in adults admitted to an academic medical center in Seattle, Washington, between 2 March and 26 March 2020 were included. We evaluated individuals with and without severe disease, defined as admission to the intensive care unit or death. RESULTS: One hundred five COVID-19 patients were hospitalized. Thirty-five percent were admitted from a senior home or skilled nursing facility. The median age was 69 years, and half were women. Three or more comorbidities were present in 55% of patients, with hypertension (59%), obesity (47%), cardiovascular disease (38%), and diabetes (33%) being the most prevalent. Most (63%) had symptoms for ≥5 days prior to admission. Only 39% had fever in the first 24 hours, whereas 41% had hypoxia at admission. Seventy-three percent of patients had lymphopenia. Of 50 samples available for additional testing, no viral coinfections were identified. Severe disease occurred in 49%. Eighteen percent of patients were placed on mechanical ventilation, and the overall mortality rate was 33%. CONCLUSIONS: During the early days of the COVID-19 epidemic in Washington State, the disease had its greatest impact on elderly patients with medical comorbidities. We observed high rates of severe disease and mortality in our hospitalized patients.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/virology , Female , Hospitalization/statistics & numerical data , Humans , Lymphopenia/epidemiology , Lymphopenia/mortality , Lymphopenia/virology , Male , Middle Aged , Retrospective Studies , Young Adult
20.
Int Immunopharmacol ; 95: 107586, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1149235

ABSTRACT

The incidence of the novel coronavirus disease (COVID-19) outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has brought daunting complications for people as well as physicians around the world. An ever-increasing number of studies investigating the characteristics of the disease, day by day, is shedding light on a new feature of the virus with the hope that eventually these efforts lead to the proper treatment. SARS-CoV-2 activates antiviral immune responses, but in addition may overproduce pro-inflammatory cytokines, causing uncontrolled inflammatory responses in patients with severe COVID-19. This condition may lead to lymphopenia and lymphocyte dysfunction, which in turn, predispose patients to further infections, septic shock, and severe multiple organ dysfunction. Therefore, accurate knowledge in this issue is important to guide clinical management of the disease and the development of new therapeutic strategies in patients with COVID-19. In this review, we provide a piece of valuable information about the alteration of each subtype of lymphocytes and important prognostic factors associated with these cells. Moreover, through discussing the lymphopenia pathophysiology and debating some of the most recent lymphocyte- or lymphopenia-related treatment strategies in COVID-19 patients, we tried to brightening the foreseeable future for COVID-19 patients, especially those with severe disease.


Subject(s)
COVID-19 Drug Treatment , COVID-19/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/virology , Lymphopenia/immunology , Lymphopenia/physiopathology , SARS-CoV-2/immunology , COVID-19/complications , Humans , Lymphopenia/etiology , Lymphopenia/virology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL